Towards a codelet-based runtime
for exascale computing

Chris Lauderdale
ET International, Inc.

e~~~

SLIDE 2 OF 24

What will be covered

e Problems & motivation
e Codelet runtime overview
e Codelets & complexes

* Dealing with locality & heterogeneity

e Related work & conclusion

SLIDE 3 OF 24

Introduction

 Can’t reach exascale by continuing past trends

 Need something to

 Expose and coordinate parallelism
 Control data and execution locality

e Abstract platform- and location-specific details

e Unity software interface for supercomputing

Abstract machine model

Cluster

T |

Registers

S)

Node Node oo Node
Node CPU
CPU
GPU /accel.
CPU
[
[
[
e
o :
GPU /accel. o "
Chip-local RAM H
Node RAM CPU
" Core
Local RAM

SLIDE 4 OF 24

SLIDE 5 OF 24

Hardware-related problems: Scalability

* Present & future reliance on thread-level
parallelism for performance increases

Can’t keep increasing clock rate

Can’t keep relying on instruction-level parallelism

e Memory access

s =T e

More cores — higher access latency, power cost
Not practical to use coherent caches

Small core-/chip-local memories simplify hardware
but complicate software

Need a way to hide access latencies and cross
address spaces

|
!

SLIDE 6 OF 24

Hardware-related problems: Heterogeneity

e Increasingly common

e (Good solution for

» Effective utilization of space/power on chip

* Accelerating matrix-/vector-related operations
e Difficult to actually use in software

e Special APIs for accelerators

 Must statically partition work or duplicate code

* Need to handle more transparently (unify and
coordinate support software)

e e

|
!

SLIDE 7 OF 24

Software-related problems

 Reliance on sequential processing, coherent
memory

 Can use multithreading for parallelism, but

» High address space/memory overhead for stack
 High overhead to create, manage, switch threads

e Stack must remain in fixed address range for its
lifetime

 Need a way to sidestep blocking, expose tfine-
orained parallelism

1
!

e e

Existing software frameworks

Cluster

Node_,.*""v Node

SLIDE &8 OF 24

MPI, SHMEM: Explicit data transfer

Node

CPU

Chip—local”RAM‘

OpenCL, CUDA, DirectCompute:
Self-contained SIMD kernels

s =T e

L)
[X
oo

OpenMP: Parallel for-all

Core

EX?C' ;?Threads
units ;

/Cilk: Parallel recursion

1
!

SLIDE 9 OF 24

Existing software frameworks

MPI, SHMEM

* Must explicitly transfer data to/from specific nodes

* Are not thread-safe in general (specific to implementation)

OpenMP, Cilk, TBB

« OpenMP & Cilk geared to specific algorithm types

e TBB is C++-only; Cilk is C-only, but techniques could be applied to C+
+/FORTRAN

* Work only in one address space

e Uniform, coherent memory assumed

OpenCL, CUDA, DirectCompute

 OpenCL and Direct3D device contexts not thread-safe; CUDA is
 Must explicitly coordinate CPU and GPU

Existing frameworks achieve specific goals, but do not interact well.

... =

1
!

SLIDE 10 OF 24

Codelet runtime overview

Present software stack: Proposed software stack:
Application Application
System libraries Codelet runtime
Operating system System libraries
Hardware Operating system
Hardware
Present execution model: Proposed execution model:
Function calls [Function calls]
[User-mode threads] Codelet dispatch
OS/HW threads [User-mode threads]
OS/HW threads

1
!

... =

SLIDE 11 OF 24

Codelet runtime overview: Codelets

e Break application into smaller pieces (=codelets)

e Codelets shouldn’t block or run indefinitely
* Must explicitly spill /fill at codelet boundaries

 Low-overhead hiding of long-latency operations

 One codelet starts an operation, another catches the
result

 Runtime provides for inter-address-space mobility
e Simple & rapid exposure of fine-grained parallelism

 Makes scalability easy—just provide work and
something will run it

1
!

e e

SLIDE 12 OF 24

Example: Dual parallel for-all loops

e

\|
=

SLIDE 13 OF 24

Codelet runtime overview: Locales

e High-level description of available hardware

 Region-bound processing-+storage capabilities: locale

 Exposed API for placing codelet execution & data

 Codelets+locales enable transparent handling of
heterogeneity

SLIDE 14 oF 24

Codelets

* Fundamental unit of scheduling/execution
 Represented by in-memory descriptor

« Run fork: Work to be performed to advance
program state.

 Cancel fork: Work to be performed to back

out program state, In case an error 1s
encountered.

1
!

e e

SLIDE 15 OF 24

Codelet complexes

e Codelet complex: Ad-hoc group of >1
codelet(s) that cooperate to complete some
task.

e Can specify chain codelet & context when
starting

 Complex must chain—run or cancel its chain
codelet—Dbetore completing. Used for:
e Input cleanup
 Passing return values, taking further inputs

 Catching and resuming from errors

e e

SLIDE 16 OF 24

Codelet /function interoperability

» Codelets/complexes used as implementation of HLL
functions:

 Chain codelet+context corresponds to return IP+SP

e Input to chain corresponds to return value

 Error to canceled chain corresponds to thrown exception
 Functions used in implementation of codelets:

* Run/cancel forks implemented as functions

 Runtime calls fork function to dispatch codelet

 Return from fork function = end of codelet

« Complexes can be wrapped as functions and vice versa

e e

Locality awareness

SLIDE 17 OF 24

Cluster

Node

e System components
crouped into a locale tree

Chip

e Each locale has attached

Core group

scheduler & allocator

 Leaf locales correspond to

Core

threads

e Higher-level locales manage
children’s resources collectively

* Schedulers/allocators push and
pull work around the hierarchy

Thread

|
!

SLIDE 18 OF 24

Handling heterogeneity

* (Global locale tree shared throughout runtime

e [Locales describe associated hardware details

* Code format/ISA differences

e Codelets are identified globally, but different
descriptor data may be used in different locales

* Can provide different run/cancel forks for different
architectures using same descriptor

1
!

e e

SLIDE 19 oOF 24

Scheduling and allocation

* Leaf schedulers/allocators manage time/space
on a particular thread, higher-level can delegate

* Application can specify sooner/later ordering

Chip scheduler ~ Chip scheduler Chip scheduler
B
= —)p .\) e
@ »C G D B
Core 1 sched.| |Core 2 sched. Core 1 sched.| |Core 2 sched. Core 1 sched.| |Core 2 sched.

B has been scheduled to chip. B taken by core 2. D runs on core 1.
A is running on core 1. C runs on core 1. E stolen by core 2.

Core 2 is idle. C schedules D & E to core 1.
A schedules C to core 1.

e e

|
!

SLIDE 20 OF 24

Applicability to algorithm classes

* Fork-join-style algorithms

e Recursion-based

- (Can parallelize multiway-recursive algorithms

- Application-specified scheduling order limits parallelism
blowup

* Data-parallel /SIMD

- (Can do parallel for-all over locales to distribute work

- Work stealing automatically balances load afterwards
 Dataflow algorithms
e (Can register codelet instances to catch data availability

 Can use locale-based routing to walk around graphs

e e

SLIDE 21 OF 24

Related work

e Basis for codelets: Gao et al.’s theoretical model

 Dropped theoretical limitations

e Added cancellation and chaining semantics

* Locales closely related to Habanero hierarchical place
trees

e Lixisting frameworks:

+ MPIL, SHMEM, OpenMP, Cilk, TBB, OpenCL, CUDA,
DirectCompute (already addressed)
* ParalleX (model) and HPX (runtime implementation)

- Many higher-level constructs

- Can implement PX constructs on top of a codelet runtime

e e

SLIDE 22 OF 24

Ongoing /future work

e SWift Adaptive Runtime Machine

 Version 0: Experimental prototype; available for
download

- Reduced scheduling capability, codelet semantics,
allocator support

 Version 1: Under development

SLIDE 23 OF 24

Conclusion

e Need a new execution model for exascale

e Codelet runtime model enables

e Scalability

- Feed codelets to the runtime, don’t rely on threading

— Unified model for entire cluster
e Portability

- Single portable runtime interface

- Platform differences can be dealt with by runtime
e Better hardware utilization

- Automatic load balancing

- Transparent use of heterogeneous components

e e

1
!

Questions/comments?

SWARM v0 download: http://etinternational .com/swarm

e~~~

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

