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What will be covered

● Problems & motivation
● Codelet runtime overview
● Codelets & complexes
● Dealing with locality & heterogeneity
● Related work & conclusion
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Introduction

● Can’t reach exascale by continuing past trends
● Need something to

● Expose and coordinate parallelism
● Control data and execution locality
● Abstract platform- and location-specific details
● Unify software interface for supercomputing
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Abstract machine model
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Hardware-related problems: Scalability
● Present & future reliance on thread-level 

parallelism for performance increases
● Can’t keep increasing clock rate
● Can’t keep relying on instruction-level parallelism

● Memory access
● More cores → higher access latency, power cost
● Not practical to use coherent caches
● Small core-/chip-local memories simplify hardware 

but complicate software
● Need a way to hide access latencies and cross 

address spaces
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Hardware-related problems: Heterogeneity

● Increasingly common
● Good solution for

● Effective utilization of space/power on chip
● Accelerating matrix-/vector-related operations

● Difficult to actually use in software
● Special APIs for accelerators
● Must statically partition work or duplicate code

● Need to handle more transparently (unify and 
coordinate support software)
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Software-related problems

● Reliance on sequential processing, coherent 
memory

● Can use multithreading for parallelism, but
● High address space/memory overhead for stack
● High overhead to create, manage, switch threads
● Stack must remain in fixed address range for its 

lifetime
● Need a way to sidestep blocking, expose fine-

grained parallelism
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Existing software frameworks
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MPI, SHMEM: Explicit data transfer

OpenMP: Parallel for-all
Cilk: Parallel recursionOpenCL, CUDA, DirectCompute:

Self-contained SIMD kernels
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Existing software frameworks

● MPI, SHMEM
● Must explicitly transfer data to/from specific nodes
● Are not thread-safe in general (specific to implementation)

● OpenMP, Cilk, TBB
● OpenMP & Cilk geared to specific algorithm types
● TBB is C++-only; Cilk is C-only, but techniques could be applied to C+

+/FORTRAN
● Work only in one address space
● Uniform, coherent memory assumed

● OpenCL, CUDA, DirectCompute
● OpenCL and Direct3D device contexts not thread-safe; CUDA is
● Must explicitly coordinate CPU and GPU

● Existing frameworks achieve specific goals, but do not interact well.
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Codelet runtime overview
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Codelet runtime overview: Codelets

● Break application into smaller pieces (=codelets)
● Codelets shouldn’t block or run indefinitely
● Must explicitly spill/fill at codelet boundaries

● Low-overhead hiding of long-latency operations
● One codelet starts an operation, another catches the 

result
● Runtime provides for inter-address-space mobility

● Simple & rapid exposure of fine-grained parallelism
● Makes scalability easy—just provide work and 

something will run it
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Example: Dual parallel for-all loops
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Codelet runtime overview: Locales

● High-level description of available hardware
● Region-bound processing+storage capabilities: locale
● Exposed API for placing codelet execution & data

● Codelets+locales enable transparent handling of 
heterogeneity
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Codelets

● Fundamental unit of scheduling/execution
● Represented by in-memory descriptor
● Run fork: Work to be performed to advance 

program state.
● Cancel fork: Work to be performed to back 

out program state, in case an error is 
encountered.
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Codelet complexes

● Codelet complex: Ad-hoc group of ≥1 
codelet(s) that cooperate to complete some 
task.

● Can specify chain codelet & context when 
starting

● Complex must chain—run or cancel its chain 
codelet—before completing.  Used for:
● Input cleanup
● Passing return values, taking further inputs
● Catching and resuming from errors
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Codelet/function interoperability

● Codelets/complexes used as implementation of HLL 
functions:
● Chain codelet+context corresponds to return IP+SP
● Input to chain corresponds to return value
● Error to canceled chain corresponds to thrown exception

● Functions used in implementation of codelets:
● Run/cancel forks implemented as functions
● Runtime calls fork function to dispatch codelet
● Return from fork function = end of codelet

● Complexes can be wrapped as functions and vice versa
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Locality awareness

● System components
grouped into a locale tree
● Each locale has attached 

scheduler & allocator
● Leaf locales correspond to 

threads
● Higher-level locales manage 

children’s resources collectively
● Schedulers/allocators push and 

pull work around the hierarchy
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Handling heterogeneity

● Global locale tree shared throughout runtime
● Locales describe associated hardware details
● Code format/ISA differences

● Codelets are identified globally, but different 
descriptor data may be used in different locales

● Can provide different run/cancel forks for different 
architectures using same descriptor



Slide 19 of 24

Scheduling and allocation

● Leaf schedulers/allocators manage time/space 
on a particular thread, higher-level can delegate

● Application can specify sooner/later ordering

Chip scheduler

Core 2 sched.Core 1 sched.
A

B
Chip scheduler

Core 2 sched.Core 1 sched.
C B

Chip scheduler

Core 2 sched.Core 1 sched.
ED

B

C ED E

B has been scheduled to chip.
A is running on core 1.
Core 2 is idle.
A schedules C to core 1.

B taken by core 2.
C runs on core 1.
C schedules D & E to core 1.

D runs on core 1.
E stolen by core 2.
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Applicability to algorithm classes

● Fork-join-style algorithms
● Recursion-based

– Can parallelize multiway-recursive algorithms
– Application-specified scheduling order limits parallelism 

blowup
● Data-parallel/SIMD

– Can do parallel for-all over locales to distribute work
– Work stealing automatically balances load afterwards

● Dataflow algorithms
● Can register codelet instances to catch data availability
● Can use locale-based routing to walk around graphs
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Related work

● Basis for codelets: Gao et al.’s theoretical model
● Dropped theoretical limitations
● Added cancellation and chaining semantics

● Locales closely related to Habanero hierarchical place 
trees

● Existing frameworks:
● MPI, SHMEM, OpenMP, Cilk, TBB, OpenCL, CUDA, 

DirectCompute (already addressed)
● ParalleX (model) and HPX (runtime implementation)

– Many higher-level constructs
– Can implement PX constructs on top of a codelet runtime
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Ongoing/future work

● SWift Adaptive Runtime Machine

● Version 0: Experimental prototype; available for 
download
– Reduced scheduling capability, codelet semantics, 

allocator support
● Version 1: Under development
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Conclusion

● Need a new execution model for exascale
● Codelet runtime model enables

● Scalability
– Feed codelets to the runtime, don’t rely on threading
– Unified model for entire cluster

● Portability
– Single portable runtime interface
– Platform differences can be dealt with by runtime

● Better hardware utilization
– Automatic load balancing
– Transparent use of heterogeneous components
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Questions/comments?

SWARM v0 download: http://etinternational.com/swarm
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