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What will be covered

e Problems & motivation
e Codelet runtime overview
e Codelets & complexes

* Dealing with locality & heterogeneity

e Related work & conclusion
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Introduction

 Can’t reach exascale by continuing past trends

 Need something to

 Expose and coordinate parallelism
 Control data and execution locality

e Abstract platform- and location-specific details

e Unity software interface for supercomputing
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Hardware-related problems: Scalability

* Present & future reliance on thread-level
parallelism for performance increases

Can’t keep increasing clock rate

Can’t keep relying on instruction-level parallelism

e Memory access
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More cores — higher access latency, power cost
Not practical to use coherent caches

Small core-/chip-local memories simplify hardware
but complicate software

Need a way to hide access latencies and cross
address spaces
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Hardware-related problems: Heterogeneity

e Increasingly common

e (Good solution for

» Effective utilization of space/power on chip

* Accelerating matrix-/vector-related operations
e Difficult to actually use in software

e Special APIs for accelerators

 Must statically partition work or duplicate code

* Need to handle more transparently (unify and
coordinate support software)
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Software-related problems

 Reliance on sequential processing, coherent
memory

 Can use multithreading for parallelism, but

» High address space/memory overhead for stack
 High overhead to create, manage, switch threads

e Stack must remain in fixed address range for its
lifetime

 Need a way to sidestep blocking, expose tfine-
orained parallelism
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Existing software frameworks
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MPI, SHMEM: Explicit data transfer
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OpenCL, CUDA, DirectCompute:
Self-contained SIMD kernels
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OpenMP: Parallel for-all
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/Cilk: Parallel recursion
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Existing software frameworks

MPI, SHMEM

* Must explicitly transfer data to/from specific nodes

* Are not thread-safe in general (specific to implementation)

OpenMP, Cilk, TBB

« OpenMP & Cilk geared to specific algorithm types

e TBB is C++-only; Cilk is C-only, but techniques could be applied to C+
+/FORTRAN

* Work only in one address space

e Uniform, coherent memory assumed

OpenCL, CUDA, DirectCompute

 OpenCL and Direct3D device contexts not thread-safe; CUDA is
 Must explicitly coordinate CPU and GPU

Existing frameworks achieve specific goals, but do not interact well.
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Codelet runtime overview

Present software stack: Proposed software stack:
Application Application
System libraries Codelet runtime
Operating system System libraries
Hardware Operating system
Hardware
Present execution model: Proposed execution model:
Function calls [Function calls]
[User-mode threads] Codelet dispatch
OS/HW threads [User-mode threads]
OS/HW threads
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Codelet runtime overview: Codelets

e Break application into smaller pieces (=codelets)

e Codelets shouldn’t block or run indefinitely
* Must explicitly spill /fill at codelet boundaries

 Low-overhead hiding of long-latency operations

 One codelet starts an operation, another catches the
result

 Runtime provides for inter-address-space mobility
e Simple & rapid exposure of fine-grained parallelism

 Makes scalability easy—just provide work and
something will run it
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Example: Dual parallel for-all loops
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Codelet runtime overview: Locales

e High-level description of available hardware

 Region-bound processing-+storage capabilities: locale

 Exposed API for placing codelet execution & data

 Codelets+locales enable transparent handling of
heterogeneity
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Codelets

* Fundamental unit of scheduling/execution
 Represented by in-memory descriptor

« Run fork: Work to be performed to advance
program state.

 Cancel fork: Work to be performed to back

out program state, In case an error 1s
encountered.

1
!

e e



SLIDE 15 OF 24

Codelet complexes

e Codelet complex: Ad-hoc group of >1
codelet(s) that cooperate to complete some
task.

e Can specify chain codelet & context when
starting

 Complex must chain—run or cancel its chain
codelet—Dbetore completing. Used for:
e Input cleanup
 Passing return values, taking further inputs

 Catching and resuming from errors

e e
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Codelet /function interoperability

» Codelets/complexes used as implementation of HLL
functions:

 Chain codelet+context corresponds to return IP+SP

e Input to chain corresponds to return value

 Error to canceled chain corresponds to thrown exception
 Functions used in implementation of codelets:

* Run/cancel forks implemented as functions

 Runtime calls fork function to dispatch codelet

 Return from fork function = end of codelet

« Complexes can be wrapped as functions and vice versa

e e



Locality awareness
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Cluster

Node

e System components
crouped into a locale tree

Chip

e Each locale has attached

Core group

scheduler & allocator

 Leaf locales correspond to

Core

threads

e Higher-level locales manage
children’s resources collectively

* Schedulers/allocators push and
pull work around the hierarchy

Thread
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Handling heterogeneity

* (Global locale tree shared throughout runtime

e [Locales describe associated hardware details

* Code format/ISA differences

e Codelets are identified globally, but different
descriptor data may be used in different locales

* Can provide different run/cancel forks for different
architectures using same descriptor
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Scheduling and allocation

* Leaf schedulers/allocators manage time/space
on a particular thread, higher-level can delegate

* Application can specify sooner/later ordering

Chip scheduler ~ Chip scheduler Chip scheduler
B
= —)p .\ ) e
@ »C G D B
Core 1 sched.| |Core 2 sched. Core 1 sched.| |Core 2 sched. Core 1 sched.| |Core 2 sched.

B has been scheduled to chip. B taken by core 2. D runs on core 1.
A is running on core 1. C runs on core 1. E stolen by core 2.

Core 2 is idle. C schedules D & E to core 1.
A schedules C to core 1.
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Applicability to algorithm classes

* Fork-join-style algorithms

e Recursion-based

- (Can parallelize multiway-recursive algorithms

- Application-specified scheduling order limits parallelism
blowup

* Data-parallel /SIMD

- (Can do parallel for-all over locales to distribute work

- Work stealing automatically balances load afterwards
 Dataflow algorithms
e (Can register codelet instances to catch data availability

 Can use locale-based routing to walk around graphs

e e
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Related work

e Basis for codelets: Gao et al.’s theoretical model

 Dropped theoretical limitations

e Added cancellation and chaining semantics

* Locales closely related to Habanero hierarchical place
trees

e Lixisting frameworks:

+ MPIL, SHMEM, OpenMP, Cilk, TBB, OpenCL, CUDA,
DirectCompute (already addressed)
* ParalleX (model) and HPX (runtime implementation)

- Many higher-level constructs

- Can implement PX constructs on top of a codelet runtime
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Ongoing /future work

e SWift Adaptive Runtime Machine

 Version 0: Experimental prototype; available for
download

- Reduced scheduling capability, codelet semantics,
allocator support

 Version 1: Under development
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Conclusion

e Need a new execution model for exascale

e Codelet runtime model enables

e Scalability

- Feed codelets to the runtime, don’t rely on threading

— Unified model for entire cluster
e Portability

- Single portable runtime interface

- Platform differences can be dealt with by runtime
e Better hardware utilization

- Automatic load balancing

- Transparent use of heterogeneous components

e e
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Questions/comments?

SWARM v0 download: http://etinternational .com/swarm
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