
Towards a codelet-based runtime
for exascale computing

Chris Lauderdale
ET International, Inc.

Slide 2 of 24

What will be covered

● Problems & motivation
● Codelet runtime overview
● Codelets & complexes
● Dealing with locality & heterogeneity
● Related work & conclusion

Slide 3 of 24

Introduction

● Can’t reach exascale by continuing past trends
● Need something to

● Expose and coordinate parallelism
● Control data and execution locality
● Abstract platform- and location-specific details
● Unify software interface for supercomputing

Slide 4 of 24

Abstract machine model

Node Node Node

Cluster

Node

Node RAM

GPU/accel.

CPU

CPU

CPU

GPU/accel.

CPU

Chip-local RAM

Core/
group

Core/
group

Core/
group

Core/
group

Core/
group

Core
Local RAM

Registers
ThreadsExec.

units

Slide 5 of 24

Hardware-related problems: Scalability
● Present & future reliance on thread-level

parallelism for performance increases
● Can’t keep increasing clock rate
● Can’t keep relying on instruction-level parallelism

● Memory access
● More cores → higher access latency, power cost
● Not practical to use coherent caches
● Small core-/chip-local memories simplify hardware

but complicate software
● Need a way to hide access latencies and cross

address spaces

Slide 6 of 24

Hardware-related problems: Heterogeneity

● Increasingly common
● Good solution for

● Effective utilization of space/power on chip
● Accelerating matrix-/vector-related operations

● Difficult to actually use in software
● Special APIs for accelerators
● Must statically partition work or duplicate code

● Need to handle more transparently (unify and
coordinate support software)

Slide 7 of 24

Software-related problems

● Reliance on sequential processing, coherent
memory

● Can use multithreading for parallelism, but
● High address space/memory overhead for stack
● High overhead to create, manage, switch threads
● Stack must remain in fixed address range for its

lifetime
● Need a way to sidestep blocking, expose fine-

grained parallelism

Slide 8 of 24

Existing software frameworks

Node Node Node

Cluster

Node

Node RAM

GPU/accel.

CPU

CPU

CPU

GPU/accel.

CPU

Chip-local RAM

Core/
group

Core/
group

Core/
group

Core/
group

Core/
group

Core
Local RAM

Registers
ThreadsExec.

units

MPI, SHMEM: Explicit data transfer

OpenMP: Parallel for-all
Cilk: Parallel recursionOpenCL, CUDA, DirectCompute:

Self-contained SIMD kernels

Slide 9 of 24

Existing software frameworks

● MPI, SHMEM
● Must explicitly transfer data to/from specific nodes
● Are not thread-safe in general (specific to implementation)

● OpenMP, Cilk, TBB
● OpenMP & Cilk geared to specific algorithm types
● TBB is C++-only; Cilk is C-only, but techniques could be applied to C+

+/FORTRAN
● Work only in one address space
● Uniform, coherent memory assumed

● OpenCL, CUDA, DirectCompute
● OpenCL and Direct3D device contexts not thread-safe; CUDA is
● Must explicitly coordinate CPU and GPU

● Existing frameworks achieve specific goals, but do not interact well.

Slide 10 of 24

Codelet runtime overview

Hardware

Operating system

System libraries

Application

Codelet runtime

Hardware

Operating system

System libraries

Application

Present software stack: Proposed software stack:

OS/HW threads

[User-mode threads]

Function calls

Codelet dispatch

OS/HW threads

[User-mode threads]

[Function calls]

Present execution model: Proposed execution model:

Slide 11 of 24

Codelet runtime overview: Codelets

● Break application into smaller pieces (=codelets)
● Codelets shouldn’t block or run indefinitely
● Must explicitly spill/fill at codelet boundaries

● Low-overhead hiding of long-latency operations
● One codelet starts an operation, another catches the

result
● Runtime provides for inter-address-space mobility

● Simple & rapid exposure of fine-grained parallelism
● Makes scalability easy—just provide work and

something will run it

Slide 12 of 24

Example: Dual parallel for-all loops

A1

B1 B1

C C C C C C

B2 B2

A2

Slide 13 of 24

Codelet runtime overview: Locales

● High-level description of available hardware
● Region-bound processing+storage capabilities: locale
● Exposed API for placing codelet execution & data

● Codelets+locales enable transparent handling of
heterogeneity

Slide 14 of 24

Codelets

● Fundamental unit of scheduling/execution
● Represented by in-memory descriptor
● Run fork: Work to be performed to advance

program state.
● Cancel fork: Work to be performed to back

out program state, in case an error is
encountered.

Slide 15 of 24

Codelet complexes

● Codelet complex: Ad-hoc group of ≥1
codelet(s) that cooperate to complete some
task.

● Can specify chain codelet & context when
starting

● Complex must chain—run or cancel its chain
codelet—before completing. Used for:
● Input cleanup
● Passing return values, taking further inputs
● Catching and resuming from errors

Slide 16 of 24

Codelet/function interoperability

● Codelets/complexes used as implementation of HLL
functions:
● Chain codelet+context corresponds to return IP+SP
● Input to chain corresponds to return value
● Error to canceled chain corresponds to thrown exception

● Functions used in implementation of codelets:
● Run/cancel forks implemented as functions
● Runtime calls fork function to dispatch codelet
● Return from fork function = end of codelet

● Complexes can be wrapped as functions and vice versa

Slide 17 of 24

Locality awareness

● System components
grouped into a locale tree
● Each locale has attached

scheduler & allocator
● Leaf locales correspond to

threads
● Higher-level locales manage

children’s resources collectively
● Schedulers/allocators push and

pull work around the hierarchy

Cluster

Node

Chip

Core group

Core

Thread

Slide 18 of 24

Handling heterogeneity

● Global locale tree shared throughout runtime
● Locales describe associated hardware details
● Code format/ISA differences

● Codelets are identified globally, but different
descriptor data may be used in different locales

● Can provide different run/cancel forks for different
architectures using same descriptor

Slide 19 of 24

Scheduling and allocation

● Leaf schedulers/allocators manage time/space
on a particular thread, higher-level can delegate

● Application can specify sooner/later ordering

Chip scheduler

Core 2 sched.Core 1 sched.
A

B
Chip scheduler

Core 2 sched.Core 1 sched.
C B

Chip scheduler

Core 2 sched.Core 1 sched.
ED

B

C ED E

B has been scheduled to chip.
A is running on core 1.
Core 2 is idle.
A schedules C to core 1.

B taken by core 2.
C runs on core 1.
C schedules D & E to core 1.

D runs on core 1.
E stolen by core 2.

Slide 20 of 24

Applicability to algorithm classes

● Fork-join-style algorithms
● Recursion-based

– Can parallelize multiway-recursive algorithms
– Application-specified scheduling order limits parallelism

blowup
● Data-parallel/SIMD

– Can do parallel for-all over locales to distribute work
– Work stealing automatically balances load afterwards

● Dataflow algorithms
● Can register codelet instances to catch data availability
● Can use locale-based routing to walk around graphs

Slide 21 of 24

Related work

● Basis for codelets: Gao et al.’s theoretical model
● Dropped theoretical limitations
● Added cancellation and chaining semantics

● Locales closely related to Habanero hierarchical place
trees

● Existing frameworks:
● MPI, SHMEM, OpenMP, Cilk, TBB, OpenCL, CUDA,

DirectCompute (already addressed)
● ParalleX (model) and HPX (runtime implementation)

– Many higher-level constructs
– Can implement PX constructs on top of a codelet runtime

Slide 22 of 24

Ongoing/future work

● SWift Adaptive Runtime Machine

● Version 0: Experimental prototype; available for
download
– Reduced scheduling capability, codelet semantics,

allocator support
● Version 1: Under development

Slide 23 of 24

Conclusion

● Need a new execution model for exascale
● Codelet runtime model enables

● Scalability
– Feed codelets to the runtime, don’t rely on threading
– Unified model for entire cluster

● Portability
– Single portable runtime interface
– Platform differences can be dealt with by runtime

● Better hardware utilization
– Automatic load balancing
– Transparent use of heterogeneous components

Slide 24 of 24

Questions/comments?

SWARM v0 download: http://etinternational.com/swarm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

