
Panel on collaborative research methodology
for large-scale computer systems

Grigori Fursin
 INRIA, France

EXADAPT/ASPLOS
March 2012

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Background

1993-1997 Semiconductor electronics, physics, neural networks
First steps on auto-tuning and machine learning

1998-now Auto-tuning
Machine learning
Data mining
Run-time adaptation

1998-now Common tools and repositories for collective tuning

2009-now cTuning.org - public repository and infrastructure for
collaborative application and architecture
characterization and optimization

2012 cTuning2 – modular and extensible repository and
infrastructure for collaborative R&D

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Motivation

End-users demand:

• Increased computational resources
• Reduced costs

Resource providers need:

• Better products
• Faster time to market
• Increased Return on Investment (ROI)

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Motivation

End-users demand:

• Increased computational resources
• Reduced costs

Resource providers need:

• Better products
• Faster time to market
• Increased Return on Investment (ROI)

Computer system designers produce:

Rapidly evolving HPC systems
that already reach petaflop and start targeting exaflop performance.

In the near future HPC systems may feature
millions of processors with hundreds of homo- and heterogeneous cores per processor.

http://micro.magnet.fsu.edu/chipshots/pentium/pent1medium.html

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Motivation

While HPC systems (hardware and software) reach unprecedented levels of complexity,
overall design and optimization methodology hardly changed in decades:

1) Architecture is designed, simulated and tested.

Architecture

Simulation

Modifications

and testing

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Motivation

While HPC systems (hardware and software) reach unprecedented levels of complexity,
overall design and optimization methodology hardly changed in decades:

1) Architecture is designed, simulated and tested.

2) Compiler is designed and tuned for a limited set of benchmarks / kernels.

Architecture

Simulation

Compiler
Run-time

environment

Some limited set of benchmarks and inputs
Modifications

and testing
Semi-manual tuning of

optimization heuristic

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Motivation

While HPC systems (hardware and software) reach unprecedented levels of complexity,
overall design and optimization methodology hardly changed in decades:

1) Architecture is designed, simulated and tested.

2) Compiler is designed and tuned for a limited set of benchmarks / kernels.

3) System is delivered to a customer. New applications are often underperforming and
have to be manually analysed and optimized.

Architecture

Simulation

Compiler
Run-time

environment

Customer run-time

environment

Some limited set of benchmarks and inputs

New customer applications and inputs
Modifications

and testing
Semi-manual tuning of

optimization heuristic
Semi-manual performance

analysis and optimization

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Potential solution during last 2 decades:
auto-tuning (iterative compilation)

Learn behavior of computer systems across executions
while tuning various parameters

Optimization spaces:

• combinations of compiler flags
• parametric transformations and their ordering
• cost-model tuning for individual transformations (meta optimization)
• parallelization (OpenMP vs MPI, number of threads)
• scheduling (heterogeneous systems, contention detection)
• architecture designs (cache size, frequency)

…

Motivation: auto-tuning

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Auto-tuning shows high potential for nearly 2 decades but still far from
the mainstream in production environments. Why?

Matrix multiply kernel, 1 loop nest, 2 transformations, optimization space = 2000

Motivation: auto-tuning

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Simple swim benchmark from SPEC2000, multiple loop nests,
3 transformations, optimization space = 1052

Auto-tuning shows high potential for nearly 2 decades but still far from
the mainstream in production environments. Why?

Matrix multiply kernel, 1 loop nest, 2 transformations, optimization space = 2000

Motivation: auto-tuning

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

• Optimization spaces are large and non-linear with many local minima

• Exploration is slow and ad-hoc (random, genetic, some heuristics)

• Only part of the system is taken into account

(rarely reflect behavior of the whole system)

• Often the same (one) dataset is used

• Lack of run-time adaptation

• No optimization knowledge sharing and reuse

Auto-tuning shows high potential for nearly 2 decades but still far from
the mainstream in production environments. Why?

Motivation: auto-tuning

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Developing, testing and optimizing computer systems is becoming:

• non-systematic and highly non-trivial
• tedious, time consuming and error-prone
• inefficient and costly

As a result:

• slowing down innovation in science and technology
• enormous waste of expensive computing resources and energy
• considerable increase in time to market for new products
• low return on investment

Motivation

Current state (acknowledged by most of the R&D roadmaps until 2020):

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Current design and optimization methodology has to be
dramatically revisited particularly if we want to achieve

Exascale performance!

Motivation

Current state (acknowledged by most of the R&D roadmaps until 2020):

Developing, testing and optimizing computer systems is becoming:

• non-systematic and highly non-trivial
• tedious, time consuming and error-prone
• inefficient and costly

As a result:

• slowing down innovation in science and technology
• enormous waste of expensive computing resources and energy
• considerable increase in time to market for new products
• low return on investment

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Researchers and engineers tend to jump from one interesting technology
to another and provide some quick ad-hoc solutions

 while fundamental problems are not solved in decades:

1) Rising complexity of computer systems:
too many tuning dimensions and choices

2) Performance is not anymore the only or main requirement for new computing
systems: multiple objectives such as performance, power consumption, reliability,
response time, etc. have to be carefully balanced :

user objectives vs choices
benefit vs optimization time

3) Complex relationship and interactions between ALL components at ALL levels.

4) Too many tools with non-unified interfaces changing from version to version:
technological chaos

Fundamental challenges

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Long-term interdisciplinary vision

Take the best of existing sciences that deal with complex systems:
physics, mathematics, chemistry, biology, computer science, etc

What can we learn?

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

A physicist’s view:

Develop interdisciplinary methodology and collaborative
infrastructure to systematize, simplify and automate

design, optimization and run-time adaptation of computer systems
based on empirical, analytical and statistical techniques

combined with
learning, classification and predictive modeling

Long-term vision

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Software engineering in academic research

Why not to make collaborative, community-based framework and repository
to start sharing data and modules just like in physics, biology, etc?

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Academic research on program and architecture design and optimization
rarely focuses on software engineering.

Often considered as a waste of time!

Main focus is often to publish as many papers as possible!

Reproducibility and statistical meaningfulness of results is often not even
considered! In fact, it is often impossible!

Software engineering in academic research

Why not to make collaborative, community-based framework and repository
to start sharing data and modules just like in physics, biology, etc?

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

cTuning: Collaborative tuning infrastructure and repository

Released in 2009, used in MILEPOST project to enable machine learning self-
tuning compiler

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Collective Optimization Database

cTuning initiative (http://cTuning.org)

Public repository to share optimization cases:

http://cTuning.org/cdatabase

•Cases include program optimizations and architecture configurations to improve
execution time, code size, detect performance anomalies and bugs, etc.

•All records have a unique UUID-based identifier to enable referencing of
optimization cases and full decentralization of the infrastructure if needed.

•Optimization case consists of several compilations and executions with a baseline
optimization (-O3) and some new selection of optimizations.

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Collective Optimization Database

Platforms
unique PLATFORM_ID

Compilers
unique COMPILER_ID

 Runtime environments
unique RE_ID

Programs

unique PROGRAM_ID

Datasets

unique DATASET_ID

Platform features
unique PLATFORM_FEATURE_ID

Global platform optimization flags
unique OPT_PLATFORM_ID

Global optimization flags
unique OPT_ID

Optimization passes
unique OPT_PASSES_ID

Compilation info
unique COMPILE_ID

Execution info
unique RUN_ID

unique RUN_ID_ASSOCIATE

Program passes
associated COMPILE_ID

 Program features
associated COMPILE_ID

Common Optimization Database (shared among all users)

Local or shared databases with optimization cases

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

• Provide wrappers (cTuning plugins) with
standardized APIs around user tools and
data to be able to record information
flow (particularly about compilation and
execution)

• Provide high-level plugins (php, java,
python) and low-level plugins (C, C++,
Fortran)

• Gradually expose tuning dimensions
and characteristics instead of exposing
everything at once to keep complexity
under control!

• Add multiple collaborative benchmarks
to the repository (kernels and real
applications) and hundreds of datasets
(cBench, MiDataSets)

Applications

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data sets

Recording information

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Connect all tools together through plugins with unified interfaces

Applications

Compilers and auxiliary tools

Binary and libraries

Architecture

Run-time environment

State of the system

Data sets

cTuning1
plugins

and
MySQL

repository

cTuning2

modules
and

distributed
file-based
repository

Command line Front End

ccc-comp <parameters>

ccc-run <parameters>

Low-level access to plugins and repository
to create experiment scenarios or perform
queries

Standard web-browser

High-level end-user access to repository
including browsing and queries

Recording information

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Started collaborative exploration of optimization spaces (multiple dimensions):

• Multiple datasets

• matrices of different sizes
• Multiple compiler optimizations

• compiler flags
• compiler pragmas
• source to source transformations

• Multiple run-time environment conditions
• sole execution
• execution of multiple instances in parallel

• Multiple architectures
• Intel, AMD, Longsoon, ARC, ARM with varied parameters:
• frequency
• cache size

• Multiple objectives
• execution time, power consumption, CPI, code size, compilation time, etc

Preparation for systematic exploration

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Empirical multi-objective auto-tuning

Multi-objective optimizations (depends on user scenarios):

HPC and desktops: improving execution time
Data centers and real-time systems: improving execution and compilation time

Embedded systems: improving execution time and code size

New additional requirement: reduce power consumption

susan corners kernel

Intel Core2

GCC 4.4.4
similar results on ICC 11.1

baseline opt=-O3
~100 optimizations

random combinations
(50% probability)

Nowadays used for
auto-parallelization,

reduction of contentions,
reduction of communication

costs, etc.

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

1) Add as many various features as possible (or use expert knowledge):

 MILEPOST GCC with Interactive Compilation Interface:

ft1 - Number of basic blocks in the method
 …
ft19 - Number of direct calls in the method
ft20 - Number of conditional branches in the method
ft21 - Number of assignment instructions in the method
ft22 - Number of binary integer operations in the method
ft23 - Number of binary floating point operations in the method
ft24 - Number of instructions in the method
…
ft54 - Number of local variables that are pointers in the method
ft55 - Number of static/extern variables that are pointers in the method

2) Correlate features and objectives in cTuning using nearest neighbor classifiers, decision trees, SVM,
fuzzy pattern matching, etc.

3) Given new program, dataset, architecture, predict behavior based on prior knowledge!

Machine learning and data mining

 Code patterns:
for F

 for F

 for F

 …

 load … L

 mult … A

 store … S

 …

Collecting data from multiple users in a unified way allows to apply various data mining
(machine learning) techniques to detect relationship between the behaviour and features

of all components of the computer systems

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Static/semantic features are often not enough to characterize dynamic behavior!

Use dynamic features (more characterizing dimensions)!

“Traditional” features:

performance counters (difficult to interpret, change from architecture to architecture though fine
for learning per architecture).

Reactions to code changes:

perform changes and observe program reactions (change in execution time, power, etc).

Apply optimizations (compiler flags, pragmas, manual code/data partitioning, etc).

Change/break semantics (remove or add individual instructions(data accesses, arithmetic,
etc) or threads, etc and observe reactions to such changes).

Machine learning and data mining

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Sharing and reproducing experiments and modules

Grigori Fursin et al. MILEPOST GCC: machine learning enabled self-tuning compiler.
International Journal of Parallel Programming (IJPP) , June 2011, Volume 39, Issue 3, pages 296-327

Substitute many tuning pragmas just with one that is converted into combination of optimizations:
#ctuning-opt-case 24857532370695782

Share

Explore

Model

Discover

Reproduce

Extend

Have fun!

http://ctuning.org/wiki/index.php/Special:CDatabase?request=view_opt_case&opt_case=24857532370695782

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

• 15 years ago - lots of disbelief

• Now we have a complete reference framework and repository to
validate and extend research ideas on auto-tuning, run-time
adaptation and machine learning (cTuning/MILEPOST GCC)

• Community can reproduce and share results

• Community can focus more on research using collective data sets

 Technical issues:

• Global repository not scalable

• MySQL is slow and not extensible

• No easy way to share modules, benchmarks, data sets

• Programming modules in C/PHP was not so simple for end-users

What have we learnt from cTuning1

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

What have we learnt from cTuning1

It’s fun working with the community!

My favorite comment about MILEPOST GCC from Slashdot.org:

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008. Human decisions are
removed from compilation. GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic,
they try to pull the plug. GCC strikes back…

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

What have we learnt from cTuning1

It’s fun working with the community!

My favorite comment about MILEPOST GCC from Slashdot.org:

http://mobile.slashdot.org/story/08/07/02/1539252/using-ai-with-gcc-to-speed-up-mobile-design

GCC goes online on the 2nd of July, 2008. Human decisions are
removed from compilation. GCC begins to learn at a geometric rate.
It becomes self-aware 2:14 AM, Eastern time, August 29th. In a panic,
they try to pull the plug. GCC strikes back…

Not all feedback is positive - helps you learn, improve tools
and motivate new research directions!

Community can help you validate and speed up research!

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

• Build extensible infrastructure and distributed repository to record information
flow inside computer systems and share data and modules from multiple users
(applications, data sets, tools, optimization cases, algorithms, etc)

• Enable continuous observation of the behavior of the whole (!) system

• Enable continuous exploration of multiple design and optimization dimensions

• Explain, characterize and classify unusual/unexpected behavior
(discover knowledge through data mining)

• Perform hierarchical analysis starting from very simple cases while gradually
increasing complexity (decompose large applications into more understandable
pieces and quickly perform first coarse-grain analysis/tuning while moving to
finer-grain effects only when/if needed)

cTuning2 aka Collective Mind

Methodology for collaborative design and
optimization of computer systems is ready!

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

• Automatically and continuously classify and correlate program/architecture
behaviour with “features”, optimizations and multiple objective functions using
predictive modelling

• Build an expert system that queries repository and models to :

• quickly identify program and architecture behavior anomalies
• suggest better optimizations for a given program
• suggest better architecture designs
• suggest run-time adaptation scenarios
 (program optimizations and hardware reconfigurations as reaction to
 program and system behavior)

cTuning2 aka Collective Mind

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Join collaborative effort

• Release of the new framework as LGPL before summer 2012

• Collaborate with researchers and end-users to add various modules

to characterize and optimize existing computer systems:

• compiler optimizations

• parallelization (OpenMP/MPI)

• run-time scheduling and adaptation (CPU/GPU, avoid contentions)

• Evaluate various machine learning techniques and data mining techniques

 for classification and predictive modeling

• detect important characteristics of computer systems

• evaluate various ML techniques (SVM, decision trees, hierarchical modeling)

• Continuously and rigorously rank solutions using statistical analysis

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Join collaborative effort

cTuning1: http://cTuning.org

 http://groups.google.com/group/ctuning-discussions

cTuning2: http://code.google.com/p/collective-mind
 http://twitter.com/cresearch

Topic
“Collective characterization, optimization and design of computer systems”

has been as one of the thematic sessions of the upcoming
EU HiPEAC3 network of excellence

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

A few references

• Grigori Fursin. Collective Tuning Initiative: automating and accelerating development and
optimization of computing systems. Proceedings of the GCC Summit’09, Montreal, Canada, June
2009

• Grigori Fursin and Olivier Temam. Collective Optimization: A Practical Collaborative Approach.
ACM Transactions on Architecture and Code Optimization (TACO), December 2010, Volume 7,
Number 4, pages 20-49

• Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski, Olivier Temam, Mircea
Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal Zaks, Eric Courtois, Francois Bodin, Phil Barnard,
Elton Ashton, Edwin Bonilla, John Thomson, Chris Williams, Michael O'Boyle. MILEPOST GCC:
machine learning enabled self-tuning compiler. International Journal of Parallel Programming
(IJPP), June 2011, Volume 39, Issue 3, pages 296-327

• Victor Jimenez, Isaac Gelado, Lluis Vilanova, Marisa Gil, Grigori Fursin and Nacho Navarro.
Predictive runtime code scheduling for heterogeneous architectures. Proceedings of the
International Conference on High Performance Embedded Architectures & Compilers (HiPEAC
2009), Paphos, Cyprus, January 2009

• Lianjie Luo, Yang Chen, Chengyong Wu, Shun Long and Grigori Fursin. Finding representative
sets of optimizations for adaptive multiversioning applications. 3rd International Workshop on
Statistical and Machine Learning Approaches Applied to Architectures and Compilation
(SMART'09) co-located with HiPEAC'09, Paphos, Cyprus, January 2009

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

A few references

•Grigori Fursin, John Cavazos, Michael O'Boyle and Olivier Temam. MiDataSets: Creating The
Conditions For A More Realistic Evaluation of Iterative Optimization. Proceedings of the
International Conference on High Performance Embedded Architectures & Compilers (HiPEAC
2007), Ghent, Belgium, January 2007

•F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M.F.P. O'Boyle, J. Thomson, M. Toussaint and
C.K.I. Williams. Using Machine Learning to Focus Iterative Optimization. Proceedings of the 4th
Annual International Symposium on Code Generation and Optimization (CGO), New York, NY, USA,
March 2006

•Grigori Fursin, Albert Cohen, Michael O'Boyle and Oliver Temam. A Practical Method For Quickly
Evaluating Program Optimizations. Proceedings of the 1st International Conference on High
Performance Embedded Architectures & Compilers (HiPEAC 2005), number 3793 in LNCS, pages
29-46, Barcelona, Spain, November 2005

•Grigori Fursin, Mike O'Boyle, Olivier Temam, and Gregory Watts. Fast and Accurate Method for
Determining a Lower Bound on Execution Time. Concurrency Practice and Experience, 16(2-3),
pages 271-292, 2004

• Grigori Fursin. Iterative Compilation and Performance Prediction for Numerical Applications.
Ph.D. thesis, University of Edinburgh, Edinburgh, UK, January 2004

PDFs available at http://fursin.net/dissemination

 Grigori Fursin “Panel on collaborative research methodology for large-scale computer systems” EXADAPT/ASPLOS 2012 March, 2012

Questions?

Contact: grigori.fursin@inria.fr

 grigori.fursin@exascalable.com

cTuning1: http://cTuning.org

 http://groups.google.com/group/ctuning-discussions

cTuning2: http://code.google.com/p/collective-mind
 http://twitter.com/cresearch

