RUNTIME ADAPTATION: A
CASE FOR REACTIVE CODE
ALIGNMENT

Michelle McDaniel and Kim Hazelwood
University of Virginia

I Introduction

= Code alignment affects the performance of
applications
= Poor code alignment can cause an increase in
= Branch mispredictions
o Caches misses
o = Memory stalls
o |nstruction fetches

I Code Alignment Example

int a = 0;
int 1;
int 11;

for(11 = 0; 11 < 500000000; 1++)
{
for(1 = 0; 1 < 5; 1++)
i {
at+t+;

}

I Code Alignment Example

for(ii = 0; 1ii < 500000000; i++)
{
for(i = 0; i < 5; i++)
{
at+;

0 1 2 3 4 5 6 7 8 9 a b o d e f

addl addl addl addl addl addl addl cmp cmp cmp

cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp cmp cmp jle jle

I Code Alignment Example

for(ii = 0; 1ii < 500000000; i++)
{
for(i = 0; i < 5; i++)
{
at+;

0 1 2 3 4 5 6 7 8 9 a b o d e f

addl addl addl addl addl addl addl cmp cmp cmp

cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp cmp cmp jle jle

= 250M branch mispredictions

I Code Alignment Example

for(ii = 0; 1i < 500000000; i++)
{

for(i = 0; i < 5; i++)

{

at+;

0 1 2 3 4 5 6 7 8 9 a b C d e f

addl addl addl addl addl addl addl
cmp cmp jle jle addl addl addl addl cmp

cmp cmp

cmp cmp cmp cmp cmp cmp jle
u e

I Code Alignment Example

for(ii = 0; ii < 500000000; 4i++)
{

for(i = 0; 1 < 5; i++)
{

at+;

0 1 2 3 4 5 6 7 8 9 a b C d e f

addl addl addl addl addl addl addl

cmp cmp
cmp cmp jle jle addl addl addl addl

cmp cmp cmp cmp cmp cmp cmp jle
u e

= 44K branch mispredictions

I Code Alignment Example

for(ii = 0; ii < 500000000; 4i++)

{
for(i = 0; 1 < 5; i++)

{

at+;

0 1 2 3 4 5 6 7 8 9 a b C d e f

addl addl addl addl addl addl addl cmp cmp

cmp cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp cmp cmp jle

s Jle

= 44K branch mispredictions
= 21% faster than the original version

I Code Alignment Example

0 1 2 3 4 5 6 7
addl addl

cmp jle jle addl addl addl addl cmp

addl
cmp cmp jle jle addl addl addl addl

jle

8

add|

cmp

addl

cmp

9

addl

cmp

addl

cmp

da

addl

cmp

addl

cmp

b

addl

cmp

addl

cmp

c

addl

cmp

addl

cmp

d

cmp

cmp

addl

cmp

e
cmp
jle

cmp

cmp

f
cmp
jle

cmp

= Branch prediction issue on Intel Core and Core?2

Processors

= Branch collisions cause increased branch

misprediction rate

I Limitations of Static Alighment

= Cannot align for specific microarchitectural
features (branch collisions, loop stream
detector, etc)

= Single alignment for all inputs
= Predicting branch behavior is hard

10

I Limitations of Static Alighment

= Cannot align for specific microarchitectural
features (branch collisions, loop stream
detector, etc)

= Single alignment for all inputs
= Difficult to predict runtime branch behavior

Reactive realignment can avoid
these limitations.

11

Three Alignment Questions

* How do we know an application is poorly
aligned?

= What causes these alignment issues?

= What can we do about it?

12

How do we know that an application
is poorly alighed?

How do we know?

= Basic Block Code Alignment Score

o Static alignment measurement

= Runtime Triggers
= Branch mispredictions

o Fetches-per-instruction

14

BBCA Score

BBCA Score for the SPEC 2006 Integer Benchmarks

100 —
® 80 —
o)

B 60 —

40 —

VO

20 —

om
m

0_

ywigoueex- g8y
Ifejseg/y
ddisuwo| /¢
J21792U ¥9¥
wnjuenbql|'z9
Buals'ggy
Jawwy oGy
Nwqob-Gyy
oweey
006°g0Y

edizq' Loy

youaqyad ooy

15

Runtime Triggers

= Triggers suggest an application is poorly
aligned
= |ssues to be monitored:

o Increase in instruction fetches
o Branch mispredictions

16

Runtime Triggers

cmp jle jle

cmp cmp jle

jle

for(ii =
{
for(i = 0;
{
at+;
}
}
3 4 5 6
addl
addl addl addl addl
jle addl addl addl

0; 11 < 500000000;

i < 5;
7 8
addl addl
cmp cmp
addl addl
addl cmp

e

add|

cmp

add|

cmp

it+)

addl

cmp

add|

cmp

addl

cmp

add|

cmp

add|

cmp

add|

cmp

cmp

cmp

add|l

cmp

cmp

cmp

cmp

jle

cmp

17

Runtime Triggers

Alignment for
branch test

poorly aligned

Poor-Alignment

- o (@] (@) N @) O O
o — |) o) O o) O Q
o ©) 8 8 8 °© v Bo
E (o_) N el) . =)
"J)‘ ~—
£
5 < o o) o)
Q_ b
0 o © o
(O] Al O
N — O
O
= O
L o |8
—] { \ l \ \ \
0 20000 60000 100000 140C

100K Instructions

Alignment for correctly aligned
branch test

Fetches per Instruction

12 14 16 1.8

1.0

Good-Alignment

60000 100000 140C

100K Instructions

18

Runtime Triggers
Branch mispredictions for Fetches per instruction for
429.mcf 429.mcf

15 20

data$fetchperins
10

data$branchmiss
0 1000 2000 3000 4000 5000 6000 7000

0 50000 100000 150000 200000 0 50000 100000 150000 200000

Index Index

Spikes tell us that alignment is poor at that particular code
section

19

What causes these alighment issues?

20

What causes alighment issues?

= Microarchitectural differences
= Program inputs

o Different execution paths
= Dynamic branch behavior

o Indirect branches

= Phase changes

21

I Microarchitectural Differences

= Microarchitectural features can either help or
hurt program performance

= Code alignment must adapt to the changes in
microarchitecture to exploit or accommodate
certain microarchitectural features

22

I Microarchitectural Differences

for(ii = 0; ii < 500000000; i++)

{
for(i = 0; 1 < 5; 1i++)

{

at+;

addl addl addl addl addl addl addl

cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp cmp

addl addl addl addl addl addl
cmp cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp

jle

cmp

cmp

add|l

cmp

cmp

cmp

cmp

jle

cmp

23

I Microarchitectural Differences

addl

cmp jle jle addl addl addl addl

cmp cmp jle jle addl addl addl
jle
= Core and Core2

o First alignment is 21%
slower

o Branch collisions

addl

cmp

add|

add|

addl

cmp

add|

cmp

add|

cmp

add|

cmp

add|

cmp

add|

cmp

add|

cmp

add|

cmp

add|

cmp

add|

cmp

cmp

cmp

add|

cmp

cmp

cmp

cmp

jle

cmp

24

I Microarchitectural Differences

addl addl addl addl addl addl addl

cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp cmp

addl addl addl addl addl addl
cmp cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp

jle

= Core and Core2

o First alignment is 21%
slower slower

cmp

cmp

add|

cmp

= Netburst and i/

= Second alignment is 2%

cmp

cmp

o Branch collisions o No branch collisions

Microarchitectural Differences

Branch Mispredictions

Instruction Fetches

Comparison of Microarchitectures

.

i7
B Netburst

_H}ﬂ].m

o
o
5}

o

0

|
0 Core

L

YWQOUB[eX EQY
Jeise'gly
ddisuwor /v
JoI¥92Y ¥9v
wnjuenbal|'z9y
Buals-gGy
Jawwy oGy
NWqob Gy
o2y
2006°¢0¥
2diza'Lov

OF+eg 00+20

suoljolpaldsipy youeig

Comparison of Microarchitectures

I N

YUWQOUEBX"E8Y
lejse'g/y
ddisuwor |/
1_Iy9eY 9y
wnuenbqi 29y
Puals'gGy
Jawwy 9SGy
NWQoB Gy
pwregy
206°g0t

cdizq' Loy

ckte0e 00+20°0

S80194 UoIoNJISU|

26

I Program Inputs

= At compile time, we know little about the
most frequent paths of a program

= Most frequently executed paths change based
on the input

= Dynamically, we can react to the current
execution to make up for these compiler
limitations

27

I Program Inputs — Case Study

401.bzip2-Input0 401.bzip2-Input1
c o o) = 2 0
.0 — .0
S o g 5 o
C_Cn © | S e} c_Cn © —
g g
n < n ¥
() ()
IR R
() ()
L L
o o
0 50000 100000 150000 2000 0 50000 100000 150000 200000
100K Instructions 100K Instructions

401.bzip2-Input2

[6)
5 g
[| ks o
> O
—
b=
2 o - .
P
o <
n
Q
§ -
o
)
L
Oi

0 200000 600000 1000000 1400C

100K Instructions

Runtime Branch Behavior

= Branch behavior is hard to predict at compile
time

* Indirect branches

= Phase changes

29

Indirect Branch Behavior

Benchmark

Average Static Indirect
Branch Targets

Average Dynamic Indirect
Branch Targets

400.perlbench
401.bzip2
403.gcc
445.gobmk
456.hmmer
458.sjeng
464.h264ref
471.omnetpp
483.xalancbmk

19.7
24.0
13.3
17.9
9.2
8.7
6.8
7.9
10.7

7.8
7.7
7.6
2.8
1
7.8
4.7
3.1
1.2

30

I Phase Changes — Case Study

429.mcf 458.sjeng
C | c— S ~| CE— I
© | © |
o o
© | © |

g © $ o

= 5 .
<t

=g =g
N N
o o
g — < —————————————————
© | | | ©] i]

0.0e+00 5.0e+06 1.0e+07 1.5e+07 0.0e+00 5.0e+06 1.0e+07 1.5e+07
Execution Count Execution Count

= 429.mcf: branch nested in a while loop

= Jump target is not well aligned due to compiler heuristic limitation

= 458.sjeng: case in a switch statement

31

What can we do about poor code
alignment?

What can we do about poor code
alignment?

Reactive Realignment

What can we do about it?

= Runtime realignment
= Monitor runtime triggers

= Adapt alignment as we notice symptoms of
poor alignment

* Future work: Incorporate a reactive
realignment system into dynamic optimization
schemes (JIT)

34

I Conclusions

= Alignment is important to the performance of
applications

= Static alignment techniques have several
limitations they cannot overcome

= Reactive alignment systems can align for
- microarchitectural differences, program
inputs, and dynamic branch behavior

= We can use fetches-per-instruction as a
trigger for a reactive systems

35

Questions?

