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I Introduction

= Code alignment affects the performance of
applications
= Poor code alignment can cause an increase in
= Branch mispredictions
o Caches misses
o = Memory stalls
o |nstruction fetches



I Code Alignment Example

int a = 0;
int 1;
int 11;

for(11 = 0; 11 < 500000000; 1++)
{
for(1 = 0; 1 < 5; 1++)
i {
at+t+;

}
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I Code Alignment Example

for(ii = 0; ii < 500000000; 4i++)

{
for(i = 0; 1 < 5; i++)

{

at+;

0 1 2 3 4 5 6 7 8 9 a b C d e f

addl addl addl addl addl addl addl cmp cmp

cmp cmp jle jle addl addl addl addl cmp cmp cmp cmp cmp cmp cmp jle

s Jle

= 44K branch mispredictions
= 21% faster than the original version



I Code Alignment Example
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= Branch prediction issue on Intel Core and Core?2

Processors

= Branch collisions cause increased branch

misprediction rate



I Limitations of Static Alighment

= Cannot align for specific microarchitectural
features (branch collisions, loop stream
detector, etc)

= Single alignment for all inputs
= Predicting branch behavior is hard
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I Limitations of Static Alighment

= Cannot align for specific microarchitectural
features (branch collisions, loop stream
detector, etc)

= Single alignment for all inputs
= Difficult to predict runtime branch behavior

Reactive realignment can avoid
these limitations.

11



Three Alignment Questions

* How do we know an application is poorly
aligned?

= What causes these alignment issues?

= What can we do about it?
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How do we know that an application
is poorly alighed?



How do we know?

= Basic Block Code Alignment Score

o Static alignment measurement

= Runtime Triggers
= Branch mispredictions

o Fetches-per-instruction
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BBCA Score

BBCA Score for the SPEC 2006 Integer Benchmarks
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Runtime Triggers

= Triggers suggest an application is poorly
aligned
= |ssues to be monitored:

o Increase in instruction fetches
o Branch mispredictions

16



Runtime Triggers
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Runtime Triggers

Alignment for
branch test
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Runtime Triggers
Branch mispredictions for Fetches per instruction for
429.mcf 429.mcf
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Spikes tell us that alignment is poor at that particular code
section
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What causes these alighment issues?
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What causes alighment issues?

= Microarchitectural differences
= Program inputs

o Different execution paths
= Dynamic branch behavior

o Indirect branches

= Phase changes
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I Microarchitectural Differences

= Microarchitectural features can either help or
hurt program performance

= Code alignment must adapt to the changes in
microarchitecture to exploit or accommodate
certain microarchitectural features
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I Microarchitectural Differences

for(ii = 0; ii < 500000000; i++)

{
for(i = 0; 1 < 5; 1i++)

{
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I Microarchitectural Differences
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I Microarchitectural Differences
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Microarchitectural Differences

Branch Mispredictions

Instruction Fetches

Comparison of Microarchitectures
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I Program Inputs

= At compile time, we know little about the
most frequent paths of a program

= Most frequently executed paths change based
on the input

= Dynamically, we can react to the current
execution to make up for these compiler
limitations
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I Program Inputs — Case Study
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Runtime Branch Behavior

= Branch behavior is hard to predict at compile
time

* Indirect branches

= Phase changes
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Indirect Branch Behavior

Benchmark

Average Static Indirect
Branch Targets

Average Dynamic Indirect
Branch Targets
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I Phase Changes — Case Study

429.mcf 458.sjeng
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= 429.mcf: branch nested in a while loop

= Jump target is not well aligned due to compiler heuristic limitation

= 458.sjeng: case in a switch statement
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What can we do about poor code
alignment?



What can we do about poor code
alignment?

Reactive Realignment



What can we do about it?

= Runtime realignment
= Monitor runtime triggers

= Adapt alignment as we notice symptoms of
poor alignment

* Future work: Incorporate a reactive
realignment system into dynamic optimization
schemes (JIT)
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I Conclusions

= Alignment is important to the performance of
applications

= Static alignment techniques have several
limitations they cannot overcome

= Reactive alignment systems can align for
- microarchitectural differences, program
inputs, and dynamic branch behavior

= We can use fetches-per-instruction as a
trigger for a reactive systems
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Questions?



