

Warehouse-Scale Computers What can academics do? A Call to Arms

Thomas F. Wenisch The University of Michigan

EXADAPT Workshop

© 2012 Thomas Wenisch

Can't have these under our desks...

Even those that do have 'em, can't touch 'em How can academics do data center research?

Traditional Architectural Simulators?

- 5 orders of magnitude slowdown... (e.g., GEM5)
 - × 16+ cores per chip
 - × 2 chips per box
 - × 42 boxes per rack
 - × 800+ racks per datacenter
 - Oh, need GPU models too...
 - And accurate IO...
 - And network...
 - And power/cooling systems...

== PhD awarded posthumously

How about pen & paper analysis?

• Real workloads are not Poisson [Gupta+ 2009]

Data from [Meisner ISCA'11]

Just because the math is easy... Doesn't mean its right

How about extrapolating from 1 node?

- OK, can work sometimes
 - E.g., memcached
 - But, accurate load-testing is really hard

Michigan Engineering Michigan approach: BigHouse - Raising the level of abstraction [ISPASS'12]

Integrates workloads, power-performance and queuing models that are otherwise analytically intractable (e.q. G/G/k)

A Call to Arms...

- Need to foster community resources
 - Traces from production facilities
 - Benchmarks of internet service workloads
 - Peer-reviewed models of app. behavior
 - Facility-scale simulation tools
 - Shared testbeds (e.g., PlanetLab)

Need industry, academia, gov't collaboration